Obrechkoff versus super-implicit methods for the solution of first- and second-order initial value problems
نویسندگان
چکیده
منابع مشابه
P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems
This paper discusses the numerical solution of periodic initial value problems. Two classes of methods are discussed, superimplicit and Obrechkoff. The advantage of Obrechkoff methods is that they are high-order one-step methods and thus will not require additional starting values. On the other hand they will require higher derivatives of the right-hand side. In cases when the right-hand side i...
متن کاملImplicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems
In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...
متن کاملTrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
متن کاملimplicit one-step l-stable generalized hybrid methods for the numerical solution of first order initial value problems
in this paper, we introduce the new class of implicit l-stable generalized hybrid methods forthe numerical solution of first order initial value problems. we generalize the hybrid methodswith utilize ynv directly in the right hand side of classical hybrid methods. the numericalexperimentation showed that our method is considerably more efficient compared to wellknown methods used for the numer...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2003
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(03)80024-x